Alan M. Langford • John R. Dean • David Holmes Rob Reed • Jonathan Weyers • Allan Jones **Practical Skills in Forensic Science**

THIRD EDITION

Practical Skills in **Forensic Science**

At Pearson, we have a simple mission: to help people make more of their lives through learning.

We combine innovative learning technology with trusted content and educational expertise to provide engaging and effective learning experiences that serve people wherever and whenever they are learning.

From classroom to boardroom, our curriculum materials, digital learning tools and testing programmes help to educate millions of people worldwide – more than any other private enterprise.

Every day our work helps learning flourish, and wherever learning flourishes, so do people.

To learn more, please visit us at www.pearson.com/uk

Practical Skills in Forensic Science

ALAN M. LANGFORD JOHN R. DEAN ROB REED DAVID HOLMES JONATHAN WEYERS ALLAN JONES

Third Edition

Harlow, England • London • New York • Boston • San Francisco • Toronto • Sydney Dubai • Singapore • Hong Kong • Tokyo • Seoul • Taipei • New Delhi Cape Town • São Paulo • Mexico City • Madrid • Amsterdam • Munich • Paris • Milan

Other books in the series published by Pearson Education

Practical Skills in Biology (Fourth edition) Jones, Reed, Weyers

Practical Skills in Biomolecular Sciences (Third edition) Reed, Holmes, Weyers and Jones

Practical Skills in Chemistry Dean, Jones, Holmes, Reed, Weyers and Jones

Practical Skills in Environmental Sciences Duck, Jones, Reed and Weyers Pearson Education Limited KAO Two KAO Park Harlow CM17 9NA United Kingdom Tel: +44 (0)1279 623623 Web: www.pearson.com/uk

First published 2005 (print) Second edition published 2010 (print) Third edition published 2019 (print and electronic)

© Pearson Education Limited 2005, 2010 (print) © Pearson Education Limited 2019 (print and electronic)

The rights of Alan M. Langford, John R. Dean, Rob Reed, David Holmes, Jonathan Weyers and Allan Jones to be identified as authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

The print publication is protected by copyright. Prior to any prohibited reproduction, storage in a retrieval system, distribution or transmission in any form or by any means, electronic, mechanical, recording or otherwise, permission should be obtained from the publisher or, where applicable, a licence permitting restricted copying in the United Kingdom should be obtained from the Copyright Licensing Agency Ltd, Barnard's Inn, 86 Fetter Lane, London EC4A 1EN.

The ePublication is protected by copyright and must not be copied, reproduced, transferred, distributed, leased, licensed or publicly performed or used in any way except as specifically permitted in writing by the publishers, as allowed under the terms and conditions under which it was purchased, or as strictly permitted by applicable copyright law. Any unauthorised distribution or use of this text may be a direct infringement of the authors' and the publisher's rights and those responsible may be liable in law accordingly.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

Pearson Education is not responsible for the content of third-party internet sites.

ISBN: 978-1-292-13946-3 (print) 978-1-292-14049-0 (PDF) 978-1-292-14050-6 (ePub)

British Library Cataloguing-in-Publication Data

A catalogue record for the print edition is available from the British Library

Library of Congress Cataloging-in-Publication Data

Names: Langford, Alan, 1969- author. Title: Practical skills in forensic science / Alan Langford [and five others]. Description: Third edition. | Harlow, United Kingdom : Pearson Education, [2019] Identifiers: LCCN 2017050771| ISBN 9781292139463 (Print) | ISBN 9781292140490 (PDF) | ISBN 9781292140506 (ePub) Subjects: LCSH: Forensic sciences. Classification: LCC HV8073 .P685 2018 | DDC 363.25--dc23 LC record available at https://lccn.loc.gov/2017050771

10 9 8 7 6 5 4 3 2 1 23 22 21 20 19 Cover image ©TEK IMAGE/Getty Images

Print edition typeset in 10/12pt Times LT Pro by Spi Global

Printed in Slovakia by Neografia

NOTE THAT ANY PAGE CROSS REFERENCES REFER TO THE PRINT EDITION

Contents

	List of boxes	ix
	Preface	xiii
	Guided tour	xiv
	For the student	xvi
	Acknowledgements	xvii
	Abbreviations	xix
	Fundamental approaches to science	1
1	Essentials of practical work	3
2	Health and safety	6
3	Making measurements and observations	13
4	SI units and their use	23
5	Scientific method and design of experiments	29
	Fundamental laboratory techniques	35
6	Working with liquids	37
7	Basic laboratory procedures	43
8	Principles of solution chemistry	53
9	pH and buffer solutions	57
10	Introduction to microscopy	64
11	Setting up and using microscopes	68
12	Sample preparation	77
13	DNA analysis – fundamental principles	99
	Fundamental instrumental techniques	121
14	Chromatography	123
15	Mass spectrometry	144
16	Basic spectroscopy	154
17	Atomic spectroscopy	161
18	X-ray fluorescence spectroscopy	174
19	Infrared and Raman spectroscopy	180
20	Nuclear magnetic resonance spectroscopy	194
21	Immunoassay	204
22	Electrophoresis	211
	The investigative approach to crime scene investigation	225
23	Personnel and recording the scene	227
24	Collecting evidence – basic principles	243
25	Digital evidence	252
26	Investigating fingerprints	256
27	Footwear marks and impressions	266
28	Investigating other marks	276
29	Document analysis	281
	Forensic biology	289
30	Analysis of biological fluids	291
31	DNA analysis – forensic applications	303
32	Analysis of hair	316
33	Analysis of skeletal remains	324
34	Forensic odontology	330

35	Forensic entomology	336
36	Forensic botany	345
	Execution to an inter-	055
27	Alashal analysis	355
20	Forensia taxicology	337
20	Pulk drug opolycic	300
39 40	Analysis of point	303
40	Analysis of plant	394 401
41	Analysis of fibres	401
42	Fireerms and ballistic evidence	409
44	Analysis of fires and explosions	410
	Information technology and library resources	433
45	Finding and citing published information	435
46	Using online resources	441
47	Evaluating information	451
48	Word processors, databases and other packages	458
49	Using spreadsheets	465
	Analysis and presentation of data	471
50	Fundamental principles of quantitative chemical analysis	473
51	Calibration and quantitative analysis	477
52	Using graphs	483
53	Presenting data in tables	493
54	Hints for solving numerical problems	498
55	Descriptive statistics	506
56	Choosing and using statistical tests	517
57	Chemometrics and advanced statistics	528
	Communicating information	537
58	General aspects of scientific writing	539
59	Giving a spoken presentation	546
60	Writing a forensic statement and presenting evidence in court	552
61	Reporting practical and project work	560
62	Writing essays, literature surveys and reviews	568
63	Organising a poster display	573
	Study and examination skills	579
64	The importance of transferable skills	581
65	Managing your time	585
66	Working with others	589
67	Taking notes from lectures and texts	593
68	Learning and revising effectively	598
69	Assessments and exams	606
70	Preparing your curriculum vitae	614
Ans	wers to study exercises	618
Inde	ex	632

List of boxes

2.1	How to perform a risk matrix analysis	7
3.1	Checklist for making a good diagram	21
4.1	Conversion factors between some redundant units and the SI	26
5.1	Checklist for designing and performing an experiment	32
6.1	Using a pipettor to deliver accurate, reproducible volumes of liquid	39
7.1	How to make up an aqueous solution of known concentration from	
	solid material	45
7.2	How to use Vernier calipers	50
8.1	Useful procedures for calculations involving molar concentrations	54
9.1	Using a glass pH electrode and meter to measure the pH of a solution	59
11.1	Problems in light microscopy and possible solutions	72
12.1	How to set up a Soxhlet extraction system	78
12.2	How to operate a typical supercritical fluid extraction system	79
12.3	How to operate a typical pressurised microwave-assisted	
	extraction (MAE) system	80
12.4	How to operate a typical pressurised fluid extraction (PFE) system	81
12.5	How to use a low-speed bench centrifuge	85
12.6	How to separate a carboxylic acid and a hydrocarbon using solvent extraction	90
12.7	How to pre-concentrate a sample using a reversed-phase C18 solid phase	
	extraction (SPE) cartridge	92
12.8	How to concentrate a sample using direct solid phase microextraction	
	(SPME) of an organic compound in an aqueous sample	94
12.9	How to concentrate a sample using headspace solid phase microextraction	
1212	(SPME) of an organic compound in an aqueous sample	94
12.10	How to use a rotary film evaporator	96
13.1	Types of cross and what you can (and cannot) learn from them	102
13.2	Example of a chi ² (γ^2) test	103
13.3	DNA sequencing using the chain termination (Sanger) method	112
13.4	How to carry out the polymerase chain reaction (PCR)	115
14.1	How to make micropipettes for TLC	129
14.2	How to run a thin-layer chromatogram	130
14.3	How to prepare a set of five calibration solutions in the concentration	
	range $0-10 \ \mu g \ mL^{-1} \ (mg \ L^{-1})$	133
15.1	How to identify the number of bromine or chlorine atoms in a molecule	
	from the molecular ion	146
15.2	Idealised fragmentation processes for the molecular ion (M^{+})	147
16.1	How to use a spectrophotometer	157
16.2	How to use a flame photometer	160
17.1	How to prepare a 1.000 μ g mL ⁻¹ stock solution of a metal ion	
	from a metal salt	161
17.2	How to prepare a set of five calibration solutions in the concentration range	
	$0-10 \text{ ug mL}^{-1} (\text{mg L}^{-1})$	162
17.3	How to analyse a sample using the method of standard additions in FAAS	163
17.4	Sample size and certified reference materials	164
17.5	Analysis of a sample: dilution factor	164
17.6	How to operate a flame atomic absorption spectrometer	166
17.7	How to acid-digest a sample using a hotplate	171
18.1	How to avoid problems with liquid samples in XRF	177
18.2	How to prepare a loose powder sample for XRF analysis	178
19.1	How to run an infrared spectrum of a liquid or solid film, mull or KBr disk	183
19.2	How to prepare liquid and solid films and mulls	185
	I I I I I I I I I I I I I I I I I I I	

ix

19.3	How to prepare a KBr disk	186
19.4	How to interpret an IR spectrum	190
20.1	How to prepare a sample for NMR spectroscopy	197
21.1	Calculating the drug concentration required for a 'spiked' standard	208
21.2	How to perform an ELISA screen for drugs of abuse	209
22.1	How to carry out agarose gel electrophoresis of DNA	214
22.2	How to carry out SDS-PAGE for protein separation	216
23.1	Guidelines for photographing a crime scene for court purposes	239
23.2	Redacted example of a scene statement	240
23.3	Example of a CSI statement	241
24.1	How to consider the sequential nature of evidence collection	244
24.2	How to recover blood from a scene	245
24.3	Checklist of equipment required for examination of a crime scene	248
26.1	How to locate, enhance and recover a latent fingerprint using dusting powder	258
26.2	How to develop a latent fingerprint with Superglue [®]	260
27.1	Preparation of an electrostatic lift of a footwear impression	268
27.2	Preparation of a dental stone cast at a crime scene	271
27.3	Preparation of an inkless footwear impression	272
28.1	Casting a tool mark using Mikrosil	278
29.1	How to use electrostatic detection apparatus (ESDA) to recover handwriting	283
30.1	How to carry out a presumptive test for blood	295
30.2	Extraction of DNA from bloodstains	297
30.3	Testing a stain for the presence of semen	298
30.4	How to extract sperm heads from a semen stain or swah	299
30.5	Examination of a garment for saliva	301
31.1	How to extract DNA from blood by the phenol_chloroform method	308
31.1	How to collect buccal swab samples for DNA analysis	313
31.2	An example of a case statement involving DNA analysis	314
32.1	How to 'search and recover' hair evidence	319
32.1	Stages in the analysis of a hair sample for the presence of drugs	321
32.2	An example of a case statement involving analysis of hair	321
34.1	How to estimate the age of an individual from teeth using Gustafson's method	331
34.2	How to examine bitemark evidence	333
36.1	An example of a botanical key and description	3/6
36.2	Principles of dendrochronology	351
37.1	How to back-calculate a blood alcohol concentration when no alcohol	551
57.1	has been consumed post incident	361
37.2	How to calculate a Widmark factor (r) according to Forrest (1086)	362
37.2	How to calculate a blood alcohol concentration when alcohol has been	502
57.5	account a construction of the second account concentration when account has been	264
20 1	Extraction of blood for a general drugs screen	276
20.1	An axemple of a statement for a case involving herein	201
20.1	An example of a statement for a case involving fieldin	201
20.2	How to perform a presumptive marguistest on an unknown powder of tablet	202
39.2 20.2	How to analyse bulk drugs using thin-layer chromatography	200
39.3 20.4	Calculating the purity of a drug	200
39.4	Derivatisation of ecstasy tablets using HFBA	389
39.5	How to determine whether cocaine is present in a sample as a free base or sait	390
40.1	How to collect paint fragments from a crime scene	393
40.2	now to prepare a paint sample for cross-sectional examination by	201
10.2	Endedding in plastic	396
40.3	How to prepare paint samples using Meltmount [®] for analysis of pigments	200
10.4	using a polarising microscope	398
40.4	An example of a case statement involving the analysis of paint	399

41.1	How to, search and recover, trace evidence	403
41.2	An example of a case statement involving the analysis of glass	405
42.1	How to 'search and recover' fibre evidence from exhibits recovered from	
	a crime scene and from a victim's or a suspect's clothing	410
42.2	Performing a 'shed test' on a garment	411
42.3	Examples of case statements involving the analysis of fibres	414
44.1	Main stages in a fire scene examination	424
44.2	An example of a statement for a case involving arson	428
44.3	How to identify an explosive by TLC	429
46.1	Important guidelines for using PCs and networks	442
46.2	Getting to grips with e-learning	443
46.3	Useful tips for using search engines	446
46.4	Getting the most from Google searches	447
46.5	How to evaluate information on the Internet	448
47.1	How to avoid plagiarism and copyright infringement	452
51.1	The stages involved in preparing and using a calibration curve	478
51.2	How to use a spreadsheet (Microsoft Excel [®] 2016) to produce a	
	linear regression plot	480
52.1	Checklist for the stages in drawing a graph	486
52.2	How to create and amend graphs within a spreadsheet	
	(Microsoft Excel 2016) for use in coursework reports and dissertations	486
52.3	How graphs can misrepresent and mislead	490
53.1	Checklist for preparing a table	494
53.2	How to use a word processor (Microsoft Word 2016) or a spreadsheet	
	(Microsoft Excel 2016) to create a table	495
54.1	Example of using the rules of Table 54.2	500
55.1	Descriptive statistics for a sample of data	508
55.2	Three examples where simple arithmetic means are inappropriate	509
55.3	How to use a spreadsheet (Microsoft Excel) to calculate descriptive statistics	514
56.1	How to carry out a <i>t</i> -test	523
56.2	Worked example of a <i>t</i> -test	524
57.1	Example of a two-level factorial design	530
57.2	Example of principal component analysis	533
58.1	How to achieve a clear, readable style	541
58.2	Using appropriate writing styles for different purposes (with examples)	543
58.3	Improving your writing ability by consulting a personal reference library	544
59.1	How to use PowerPoint to deliver a talk	547
59.2	Hints on presenting your talk	549
60.1	The structure of a typical forensic scientist's statement	555
60.2	Some hints on giving evidence in court	558
61.1	The structure of reports of experimental work	561
61.2	How to write up your research project (dissertation) or thesis	565
61.3	Steps in producing a scientific paper	566
63.1	How to create a poster using Office PowerPoint 2016	575
65.1	Tips for effective planning and working	588
67.1	The SQ3R technique for skimming texts	597
68.1	How to prepare and use a revision timetable	603
68.2	How to use past exam papers	604
69.1	Problem-based learning (PBL)	607
69.2	Writing under exam conditions	608
69.3	Reasons for poor exam answers to essay-style questions	609
69.4	Strategies for combatting the symptoms of exam anxiety	612
70.1	The structure and components of a typical CV and covering letter	616

Preface

'Forensic Science is defined as the application of science to serve the purposes of the law. The sciences used in the analysis of physical evidence include many aspects of chemistry, biology, physics, mathematics and statistics. This multidisciplinary nature is a core feature of forensic science.'

QAA for HE Subject Benchmark Statement for Forensic Science (2012).

Practical skills form the cornerstone of forensic science. However, the diversity of skills required in the laboratory means that a student's experience may be limited. While some techniques do require specific skills, many of them are transferable generic skills that are required throughout the subject area.

Limited time constraints of the modern curriculum often preclude or minimise laboratory time. It is the aim of this book to provide a general guidance for use in and out of practical sessions and also to cover a range of techniques from the basic to the more advanced.

In creating the third edition of *Practical Skills in Forensic Science*, we have maintained the approach of the previous editions, with the aim of providing support to students taking forensic science based courses in a concise and user-friendly manner. Key points, definitions, illustrations, 'how to' boxes, checklists, worked examples, tips and hints are included where appropriate. However, we have also used this opportunity of the new edition to restructure the layout, to literally start at the beginning of the laboratory process and progress to the end, with the dissemination of results.

In updating and thoroughly revising the book to include a 'taste' of the latest developments in methodology, we have considered carefully the Quality Assurance Agency UK Subject Benchmarking statements for Forensic Science, reviewed and updated in 2012, and have attempted to cover all the generic skills, along with the practical aspects of the subject specific topics in forensic science. With that in mind we have carefully arranged sections to cover the following themes: crime scene investigation; forensic biology; and, forensic chemistry. We have also been mindful to support one of the QAA's aims for forensic science degrees (under- and postgraduate) programmes in the context of practical skills. Specifically, "to develop a sound knowledge of science and of laboratory and other transferable skills which are of value in areas of employment other than forensic science, such as schools, hospitals, analytical science-based companies, the pharmaceutical industry, the Home Office and other government agencies".

To students who buy this book, we hope you will find it useful in the laboratory during your practical classes and in your project work – this is not a book to be left on the bookshelf.

We would like to take this opportunity to thank our wives (Jules, Lynne, Polly, Gill, Mary and Angela) and families for their continued support, and to recognise the following colleagues and friends who have provided assistance, comment and food for thought at various points during the production of all editions: James Abbott, Gary Askwith, Chris Baldwin, Dave Bannister, Jon Bookham, Samantha Bowerbank, Susan Carlile, Michelle Carlin, Jim Creighton, Sarah Cresswell, Martin Davies, Mike Deary, Sylvain Denieul, Les Dix, Marcus Durrant, Jackie Eager, Gordon Forrest, Laura Heath, Kris Heath, Derek Holmes, Helen Hooper, Alan Jones, Ed Ludkin, Ton Nelson, Tom Marshall, Dave Osborne, Justin Perry, Lee Rounds, Jane Shaw, Tony Simpson, Dave Wealleans and Ian Winship. We would also like to thank the staff of Pearson Education for the friendly support over the years, and would wish to acknowledge Richelle Zakrewski, Rufus Cornow, Pat Bond, Owen Knight, Simon Lake, Alex Seabrook and Pauline Gillett.

As with previous editions, we would be grateful to hear of any errors you might notice, so that these can be put right at the earliest opportunity.

> Alan Langford (alan.langford@northumbria.ac.uk) John R. Dean (john.dean@northumbria.ac.uk) Rob Reed (r.reed@cqu.edu.au) David Holmes (david.holmes@northumbria.ac.uk) Allan M Jones (a.m.jones@dundee.ac.uk) Jonathon Weyers (j.d.b.weyers@dundee.ac.uk)

Guided tour

Examples are included in the margin to illustrate important points without interrupting the flow of the main text.

Worked examples and **'How to' boxes** set out the essential procedures in a step-by-step manner.

Figures are used to illustrate key points, techniques and equipment.

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header>		Chromatography	Working with liquids
 Inter, D. (2006) Midding Commissionspire Methods, Marken Marken	Text references Errington, R.J. (1997) Advanced Practical Inorganic and Metalon- ganic Chamirus, Blacks Academic and Professional, Lonkon, Furniss, B.A., Hamaford, A.J., Smith, P.W.G. and Tachell, A.R. (1999) Mgel's Tacholos of Practical Organic Chemitary, Stitchen Longman, Harlow. Sources Con further study Physics San di California (2010) Forena Applications of High Professional Lapid Chamanagergoly, CRC Press, Baca Patana.	Harwood, L.M., Moody, C.J. and Percy, J.M. (2000) Experi- mental Organic Chemistry, 2nd edn. Blackwell Science Lid, Oxford. Kremislan, S. (2000) Practical Problem Solving in HPLC. Wiley, Chichester, G. Hu, D. G. M. & K. M. & K. M.	 Don't use chipped or cracked glassware – it may break inder very strains and should be disposed of in the brokes algument bin. Never carry large bottle by their necks – support them with a hard under the broken attaching tables in the stand when patting and ware their staffic any them in a basile. Take care whose the staffic and tables to be staffic any them in a basile to be staffic and ware patting and ware thick glaves when appropriate. Don't force thungs to find may thin bottlet = - they can be very diffic remove. If you need a tight scali, use a screew-top bottle with a molt plastic scale and ware the plastic scale and ware the light scale. Always apt pieces of broken glass throughly and with great care - me diago paper for weak and ware thick glaves. Always par pieces of broken glass
 Bremm, New York. Skoeg, D.A., Wach, D.M. and Holler, F. (1999). Analytical Chemistry, Wiley, Chickenser, edited State Chemistry, edited	Blienen, D.M. (2006) Violidaring Chromatographic Methods: A Practical Guide Weiley, New York, Cazes, J. (2005) Encyclopedia of Chromatography. CRC Press, Boce Raton. Chromacademy Grob, R.L. and Bayr, E.F. (2004) Modern Practice of Gas Chromatography, 4th edit. Weiley, New York. Jurris, D.C. (1995) Quantitistiv Chemical Analysis, 4th edit.	Wiley, New York. Molecular and a primarine over relation. Wiley, New York. Concentration of the contrasts, 2nd edin, Wiley, New York. Schwedt, G. (1997) The Essential Guide to Analytical Chemis- try, Wiley, Chickester. Scott, R.P.W. (1996) Chemistarynaphy Detectors: Design, Function and Operation, Marcel Dekker, New York.	Text reference Hayes, W.M. (2015) CRC Handbook of Chemistry and Physics, 604 and CRC Press, Boca Raten. Sources for further study
 14.1 Gladiske finder andromstogram. The disk more transition (White) of these methy disk nort variable and why? 14.1 Gladiske finder andromstogram. The disk more transition (White) of these methy disk nort variable and why? 14.2 Last (Last and Last (Last (Last (Last and Last (Last (Last	Freeman, New York. Kellner, R. (1998) Analytical Chemistry. Wiley, Chichester. Study exercises	Skoog, D.A., West, D.M. and Holler, F.J. (1996) Fundamentals of Analytical Chemistry, 7th edn. Saunders, Orlando.	 Anne (2016) Gillon Gindle no Paprinting, Tal edin. Available at: http://www.gillon.content/Paptiettic.content/Papt
Undex with a member of stan before you attempt this (see Chapter bo for appropriate measures of	 14. Calculate dry values from a chromatogram. The data of the dat	 highest to lowest sensitivity. Which of these meth- ods is most vessitile and why? 14.6 Calculate the resolution and selectivity of two compounds were separated by column chromatography, giving retention times of 4 min 30 s for 4 and 6 min 12 s for 8 while a compound that was completely excluded from the stationary opeak A was 6 and the base while a compound that was completely excluded from the stationary peak A was 6 and the base while opeak B was 4 s. Calculate (a) the selectivity and (b) the resolution for these two compounds (sepress all answers to 3 significant figures). 16 Test your knowledge of chromatographic theory- define the following term: 10 separation factor; 11 separation factor; 12 separation factor; 13 asymmetry factor. 	 List accessed 1 ratio 217 (Datine access to the Analacose of Demistry and Physics) Study exercises 6.1 Decide on the appropriate methods and capipment for the Belowing procedures. (a) Prequiring one litter of ethanol at approximately 70% via water for use a general-purpose respert. (b) Adding 200 (Li of a sample to the well of an List2a plate (Daty) and the same to the weight of a sample to the well of a sample to the well of a sample to the well of the same to the weight of the same to the

Sources for further study – every chapter is supported by a section giving printed and electronic sources for further study.

Study exercises are included in every chapter to reinforce learning with problems and practical exercises.

This book aims to provide guidance and support over the broad range of your undergraduate course, including laboratory classes, project work, lectures, tutorials, seminars and examinations, as outlined below:

Chapters 1–44 cover a wide range of specific practical skills required in forensic science

These are based on the authors' experience of the questions students often ask in practical classes, and the support that is needed in order to get the most out of particular exercises. The text includes tips, hints, definitions, worked examples and 'how to' boxes that set out the key procedures in a stepby-step manner, with appropriate comments on safe working practice. The material ranges from basic laboratory procedures, such as experimental design (Chapter 5) and preparing solutions (Chapters 6–8), through the fundamentals of crime scene investigation and scientific support (Chapters 23–29) to the more advanced practical procedures that you might use during a final-year project, for example analytical methods such as chromatography (Chapter 14) and spectroscopy (Chapters 16–20).

Chapters 30–44 cover the major sub-disciplines within forensic chemistry and forensic biology

As with the chapters on specific skills and techniques, these chapters are designed to provide practical guidance and advice on the various aspects of forensic analysis from a student's perspective. Many of the chapters contain 'how to' boxes and worked examples along with specific case examples, to illustrate how the individual disciplines operate in relation to particular criminal cases.

Chapters 45-49 deal with IT and library resources

These chapters will help you get the most out of the resources and information available in your library, and online resources and the Internet, as well as providing helpful guidance on the use of software packages for data analysis.

Chapters 50-57 explain data analysis and presentation

This will be an important component of your course and you will find that these chapters guide you through the skills and techniques required, ranging from the presentation of results as graphs or tables through to the application of statistical tests. Worked examples are used to reinforce the numerical aspects wherever possible.

Chapters 58-63 deal with evaluating and communicating data

These chapters will help you with preparing assignments, essays and laboratory reports, alongside support in relation to oral, visual and written forms of communication. The ability to evaluate information is an increasingly important skill in contemporary society, and practical guidance is provided here, as well as more specific advice, for example on preparing and presenting a forensic report.

Chapters 64-70 cover general skills

These include a number of transferable skills that you will develop during your course, for example self-evaluation, time management, teamwork, preparing for examinations and creating a CV.

We hope that you will find this book a helpful guide throughout your course, and beyond.

Figures

Figure 2.3 from http://www.sigmaaldrich.com/safety-center/understanding-the-label.html#67-548-ec-pictograms, Sigma-Aldrich. Used with permission of Merck KGaA, Darmstadt Germany and/or its affiliates; Figure 22.10 from http://www.sciex.com/Documents/ brochures/MDQPlus_brochure.pdf page 5, Image provided by SCIEX © 2017; Figure 23.3 adapted from Digital Imaging Procedure. V2.1. Publication number: 58/07 Home Office Scientific Development Branch (Cohen, N. and Maclennan-Brown, K. 2007) p.36, https://www.gov.uk/government/uploads/system/uploads/ attachment_data/file/378451/DIP_2.1_16-Apr-08_v2.3-Web_2835.pdf, Crown copyright. Contains public sector information licensed under the Open Government Licence (OGL) v3.0. http://www.nationalarchives.gov.uk/doc/open-government-licence/ version/3/; Figure 23.4 from Image Authentication for Digital Image Evidence, 5, pp. 1-11 (2006), Figure 8, Forensic Science Journal, 5, pp1-11 (Wen, C. and Yang, K. 2006), Central Police University Taiwan, ROC Taiwan Academy of Forensic Sciences, Taiwan, R.O.C: Figure 30.1 from Laura Barnes. With permission of L. Barnes; Figure 36.3 after Phytoplankton 2ed., Edward Arnold (Boney, D.A 1989) Reprinted by permission of Cambridge University Press.

Screenshots

Screenshot 48.1 from https://support.office.com/, Used with permission from Microsoft, Microsoft product screenshot(s) reprinted with permission from Microsoft Corporation; Screenshot 49.2 from https://www.microsoft.com/en-gb/, Microsoft, Microsoft product screenshot(s) reprinted with permission from Microsoft Corporation

Tables

Table 38.3 from Therapeutic and toxic blood concentrations of nearly 1000 drugs and other xenobiotics, Critical care 16(4), R136 (Schulz, M., Iwersen-Bergmann, S., Andresen, H and Schmoldt, A. 2012), https://doi.org/10.1186/cc11441 © Schulz et al.; licensee BioMed Central Ltd. 2012 https://creativecommons.org/licenses/ by/2.0/legalcode; Table on page 383 from https://www.gov.uk/ government/statistics/seizures-of-drugs-in-england-and-walesfinancial-year-ending-2015, © Crown copyright. Contains public sector information licensed under the Open Government Licence (OGL)v3.0. http://www.nationalarchives.gov.uk/doc/open-governmentlicence/version/3/; Table 44.1 from www.gov.uk/government/collections/fire-statistics, © Crown copyright. Contains public sector information licensed under the Open Government Licence (OGL) v3.0. http://www.nationalarchives.gov.uk/doc/open-governmentlicence/version/3/; Table 66.1 from http://www.belbin.com/belbinfor-teams/, © Belbin® 2012

Text

General Displayed Text on page 37 from Pastettes[®], Copyright © Alpha Laboratories; General Displayed Text on page 38 from Pi-pump[®], © Pi-Pump.co.uk; General Displayed Text on page 38 from Gilson Pipetman[®], Copyright © Gilson, Inc; General Displayed Text on page 40 from Parafilm[®], Copyright[®] Bemis Company, Inc.; General Displayed Text on page 41 from Pyrex[®], © Corning Incorporate; General Displayed Text on page 41 from AnalaR[®], © VWR International, LLC; General Displayed Text on page 41 from Chloros[®], Copyright by Chloros Environmental; General Displayed Text on page 41 from Virkon[®], © LANXESS; General Displayed Text on page 52 from Millipore[®], Copyright © Merck KGaA; General Displayed Text on page 79 from Celite[™], © Imerys; General Displayed Text on page 79 from ASE™, Thermo Fisher Scientific; General Displayed Text on page 88 from Teflon[®], © The Chemours Company; General Displayed Text on page 97 from driBlok[™], © Techne; General Displayed Text on page 97 from ReactiVial®, Thermo Fisher Scientific; Extract on page 109 from SYBR® Safe, Thermo Fisher Scientific; General Displayed Text on page 118 from AmpFLSTR[®]SGM Plus[™]. Thermo Fisher Scientific Applied Biosystems; General Displayed Text on page 125 from Sephadex®, © GE Healthcare; General Displayed Text on page 125 from Sepharose[®], © GE Healthcare; General Displayed Text on page 125 from Bio-gel®, Copyright © Bio-Rad Laboratories, Inc; General Displayed Text on page 132 from Rheodyne® Rheodyne LLC; General Displayed Text on page 177 from Mylar[™] film, Dupont Teijin Films U.S. Limited Partnership; General Displayed Text on page 177 from DuPont[™] Kapton[®], Copyright © DuPont; General Displayed Text on page 179 from SpectroBlend[®]. © Chemplex Industries, Inc; General Displayed Text on page 179 from Securetec Drugwipe[™] S5, Securetec AG; General Displayed Text on page 214 from Gel Doc™, Copyright © Bio-Rad Laboratories, Inc; General Displayed Text on page 216 from Bio-Rad® Bio-Safe Coomassie Stain, Copyright © Bio-Rad Laboratories, Inc; General Displayed Text on page 243 from J-LAR[®], ©NITTO DENKO CORPORATION; General Displayed Text on page 248 from Sellotape[™], Copyright Sellotape; General Displayed Text on page 254 from Encase® Forensic, © OpenText Corp; General Displayed Text on page 257 from SupraNano[™], © ArroGen Forensics Ltd.; General Displayed Text on page 258 from Zephyr[®] brush, Zephyr Mfg Co; General Displayed Text on page 258 from Maglite[®], © Mag Instrument Inc; General Displayed Text on page 258 from Lightning Powder, Armor Holding Forensics LLC; General Displayed Text on page 259 from magna brush®, Michael McCarthy; General Displayed Text on page 260 from MVC®Lite, BVDA International BV; General Displayed Text on page 260 from Super Glue®, Copyright © Super Glue Corp; General Displayed Text on page 268 from Crime-lite®, Foster + Freeman Ltd; General Displayed Text on page 271 from Snow Print WaxTM, © Safariland, LLC; General Displayed Text on page 274 from SICAR6[®], Foster & Freeman Ltd; General Displayed Text on page 277 from Silmark[™], Siltech Ltd; General Displayed Text on page 295 from Haemastix[®], © Ascensia Diabetes Care Holdings AG; General Displayed Text on page 297 from Chelex 100®, Bio-Rad Laboratories Inc.; General Displayed Text on page 300 from Phadebas[®], Magle Life Sciences ©; General Displayed Text on page 285 from AmpFLSTR[®]NGM SElect[™], Thermo Fisher Scientific; General Displayed Text on page 303 from NDNAD[®], Crown Copyright, © Crown copyright. Contains public sector information licensed under the Open Government Licence (OGL) v3.0. http://www.nationalarchives.gov.uk/doc/ open-government-licence/version/3/; General Displayed Text on

page 305 from AmpliTagGold[®], Roche Molecular Diagnostics; General Displayed Text on page 305 from SGM Plus[®], Thermo Fisher Scientific Applied Biosystems: General Displayed Text on page 306 from Powerplex®, © Promega UK, an affiliate of Promega Corporation; General Displayed Text on page 306 from Minicon[®], Copyright © Merck KGaA.; General Displayed Text on page 306 from Amplitype[®], Thermo Fisher Scientific Applied Biosystems; General Displayed Text on page 310 from Fluoroscan[®], Hologic; General Displayed Text on page 310 from StepOne[™], Thermo Fisher Scientific Applied Biosystems; General Displayed Text on page 331 from IsometTM, Copyright © Isomet Corporation; General Displayed Text on page 358 from Lion Alcolmeter[®], Lion Laboratories Limited; General Displayed Text on page 358 from Lion Intoximeter[®], Lion Laboratories Ltd; General Displayed Text on page 384 from Tylenol[®], Johnson & Johnson Inc; General Displayed Text on page 388 from Spherisorb[™], © Waters.; General Displayed Text on page 391 from Inertsil ODS2[™], Copyright GL Sciences, Inc., USA; General Displayed Text on page 396 from GEM®, © Edgewell Personal Care; General Displayed Text on page 398 from Meltmount[®], [©] Copyright By Cargille-Sacher Laboratories Inc: General Displayed Text on page 403 from Benchkote[®]. © GE Healthcare; General Displayed Text on page 405 from adidasTM, © adidas AG; General Displayed Text on page 430 from Dionex[®], Thermo Fisher Scientific; General Displayed Text on page 430 from Carbotrap 300[®], Copyright © Sigma-Aldrich Co.; General Displayed Text on page 436 from Science Direct[®], © Elsevier; General Displayed Text on page 439 from Google Scholar[™] scholarly texts search, © 2015 Google Inc. All rights reserved. Google Scholar[™] is a trademark of Google Inc., © 2015 Google Inc. All rights reserved. Google and the Google Logo are registered trademarks of Google Inc.; General Displayed Text on page 449 from Amazon[®], © Amazon.com, Inc.; General Displayed Text on page 458 from Mac[®] is a registered trademark of Apple Inc. registered in the U.S. and other countries; General Displayed Text on page 458 from Microsoft Word[®] and WordPerfect[®] https://www.microsoft.com/ en-us/legal/intellectualproperty/trademarks/usage/general.aspx, Used with permission from Microsoft; General Displayed Text on page 459 from Microsoft[®] Office, used with permission from Microsoft; General Displayed Text on page 462 from EndNote[™], Clarivate Analytics; General Displayed Text on page 463 from Statgraphics[®], Statpoint Technologies, Inc; General Displayed Text on page 463 from Minitab[®], Copyright 2017 Minitab Inc All rights reserved, Portions of the input and output contained in this

publication/book are printed with permission of Minitab Inc. All material remains the exclusive property and copyright of Minitab Inc., All rights reserved.: General Displayed Text on page 463 from Freelance Graphics®, IBM Corporation; General Displayed Text on page 463 from Harvard Graphics®, Copyright © The President and Fellows of Harvard College; General Displayed Text on page 463 from Microsoft Powerpoint[®], used with permission from Microsoft; General Displayed Text on page 463 from Sigmaplot[®], © SPSS Inc and IBM Corporation, screenshots reprinted courtesy of International Business Machines Corporation, © International Business Machines Corporation. SPSS was acquired by IBM in October, 2009. IBM, the IBM logo, ibm.com, and SPSS are trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at "IBM Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.; General Displayed Text on page 464 from Dreamweaver[®] software application, web development tool, Adobe Systems, Inc., Adobe product screenshot(s) reprinted with permission from Adobe Systems Incorporated.; General Displayed Text on page 464 from Mind Genius®, Copyright MindGenius Ltd; General Displayed Text on page 464 from Adobe Photoshop® image-editing software, Adobe Systems, Inc, Adobe product screenshot(s) reprinted with permission from Adobe Systems Incorporated.; General Displayed Text on page 464 from PaintShop Pro[®], Copyright Corel Corporation: General Displayed Text on page 465 from Microsoft Excel®, used with permission from Microsoft; General Displayed Text on page 546 from GraphPad Prism[®], ©GraphPad Software, Inc; General Displayed Text on page 586 from Filofax[®], © Copyright Filofax; General Displayed Text on page 586 from TMI®, Time Manager; General Displayed Text on page 586 from Day-timer[®], Day Timer; General Displayed Text on page 592 from Belbin[®], © BELBIN Associates.

This work is produced by Pearson Education and is not endorsed by any trademark owner referenced in this publication.

Unless otherwise indicated herein, all third party trademarks that may appear in this work are the property of their respective owners and any references to third party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between such third parties and Pearson Education, Inc. and/or its affiliates, authors, licensees or distributors.

Abbreviations

AAS	atomic absorption spectrometer
AES	atomic emission spectrometer
AC	affinity chromatography
ACS	American Chemical Society
AMPFLP	amplified fragment-length polymorphisms
ANOVA	analysis of variance
AP	acid phosphatase
APCI	atmospheric pressure chemical ionisation
A.	relative atomic mass
ASO	allele specific oligonucleotide
ATP	adenosine triphosphate
BMI	body mass index
h nt	boiling point
Ch	measured blood or breath alcohol concentration
CDT	carbohydrate-deficient transferrin
CF	capillary electrophoresis
CEC	capillary electrochromatography
CGE	capillary gel electrophoresis
COL	carbon monovide
	calculated alcohol concentration in blood or breath
CODIS	combined DNA index system
COSUU	control of substances bazardous to health
CoV	coefficient of variation
CDM	continuent of variation
CSM	crime scone manager
CZE	crime scene manager
	diada amay dataatian
DAD	diole array detection
DCM	
DESA	diug-facilitated sexual assault
DMAC	
DNA	deoxyfibonucieic acid
	alastron conture detector
ECD	electron capture detector
EDIA	elinytenediammetetraacetic acid
	electron impact (ionisation)
ELISA	enzyme-linked immunosorbent assay
EMR	electromagnetic radiation
en	ethylenediamine
EOF	electro-osmotic flow
ESDA	electrostatic detection apparatus
ESI	electrospray ionisation
FAAS	flame atomic absorption spectrometer
FID	flame ionisation detector
FOA	first officer attending
FSS	Forensic Science Service
FT	Fourier transform
FT-IR	Fourier transform – infrared spectroscopy
GC	gas chromatography
GC-MS	gas chromatography–mass spectrometry
GFC	gel filtration chromatography
GGT	γ glutamyl transferase
GHB	γ hydroxy butyrate
GPC	gel permeation chromatography
GRIM	glass refractive index measurement
GSR	gunshot residue

HASAW	hazards at work
H&E	haemotoxylin and eosin
HCB	hexachloro-1.3-butadiene
HCL	hollow cathode lamp
HFBA	heptafluorobutyric anhydride
HIC	hydrophobic interaction chromatography
HPLC	high-performance liquid chromatography
HV	hypervariable region
ICP	inductively coupled plasma
ICP-MS	inductively coupled plasma_mass spectrometry
IFC	ion exchange chromatography
IFF	isoelectric focusing
IR	infrared (radiation)
ISE	ion selective electrode
	International Union of Pure and Applied Chemistry
ka	kilogram
Kg KM	Knogram Kastla Mayar
	liquid abrometography, mass spectrometry
LC-MS	low convinue number
	I show to my fithe Covernment Chemist
LMG	leuco malachite green
LSD	lysergic acid
m	mass
MDL	minimum detectable level
MDMA	3,4-methylenedioxymethylamphetamine (ecstasy)
MEKC	micellar electrokinetic chromatography
MEL	maximum exposure limit
m.pt.	melting point
M _r	relative molecular mass
MS	mass spectrometry
MSTFA	N-methyl-N-trimethylsilyltrifluoroacetamide
mtDNA	mitochondrial DNA
NCA	National Crime Agency
NDNAD	National DNA Database
NH	null hypothesis
NIST	National Institute of Standards and Technology
NMR	nuclear magnetic resonance
NP-HPLC	normal phase high-performance liquid chromatography
ODS	octadecylsilane
OEL	occupational exposure standard
PAGE	polyacrylamide gel electrophoresis
PCIA	phenol/chloroform/isoamyl alcohol
PCR	polymerase chain reaction
PDT	pyridyldiphenyl triazine
PFA	perfluoroalkoxyvinylether
PTFE	polytetrafluoroethylene
PLOT	porous layer open tubular (column)
PMT	photomultiplier tube
PPE	personal protection equipment
r	Widmark factor
Re	relative frontal mobility
RNA	ribonucleic acid
RP-HPLC	reversed phase high-performance liquid chromatography
rpm	revolutions per minute
SAX	strong anion exchange
SCOT	support coated open tubular (column)
SCX	strong cation exchange
SDS	sodium dodecyl sulphate
505	sourani uouooyi surpriato

SE	standard error (of the sample mean)
SEM	scanning electron microscopy
SGM	second generation multiplex
SI	Système International d'Unités
SIO	senior investigating officer
SLR	single lens reflex
SNP	single nucleotide polymorphism
SOCO	scene of crime officer
SOP	standard operating procedure
STR	short tandem repeat
TCA	trichloroacetic acid
TCD	thermal conductivity detector
TE	Tris/EDTA
TEA	thermal energy analyser
TG	thermogravimetry
TLC	thin-layer chromatography
TMS	tetramethylsilane
TRIS	tris(hydroxymethyl)aminomethane or
	2-amino-2-hydroxymethyl-1,3-propane-diol
UK	United Kingdom
UKAS	United Kingdom Accreditation Services
URL	uniform resource locator
USEPA	United States Environmental Protection Agency
UV	ultraviolet (radiation)
Vd	volume of distribution
VNTR	variable number of tandem repeats
WCOT	wall-coated open tubular (column)

1 Essentials of practical work

Developing practical skills – these will include:

- designing experiments;
- observing and measuring;
- recording data;
- analysing and interpreting data;
- reporting/presenting.

All knowledge and theory in science has originated from practical observation and experimentation – this is equally true for disciplines as diverse as chromatography and molecular genetics. Practical work is an important part of most courses and often accounts for a significant proportion of the assessment marks. The abilities developed in practical classes will continue to be useful throughout your course and beyond, some within science and others in any career you choose.

Being prepared

KEY POINT You will get the most out of practicals if you prepare well in advance. Do not go into a practical session assuming that everything will be provided, without any input or involvement on your part.

The main points to remember are:

- **Read any handouts in advance** make sure you understand the purpose of the practical and the particular skills involved. Does the practical relate to, or expand on, a current topic in your lectures? Is there any additional preparatory reading that will help?
- Take along appropriate textbooks, to explain aspects of the practical.
- **Consider what safety hazards might be involved,** and any precautions you might need to take before you begin (p. 6).
- Listen carefully to any introductory guidance and note any important points adjust your schedule/handout as necessary.
- **During the practical session, organise your bench space** make sure your lab book is adjacent to, but not within, your working area. You will often find it easier to keep clean items of glassware, etc. on one side of your working space, with used equipment on the other side.
- Write up your work as soon as possible and submit it on time, or you may lose marks.
- Catch up on any work you have missed as soon as possible preferably, before the next practical session.

Ethical and legal aspects of laboratory work

You will need to consider the ethical and legal implications of forensic science work throughout your degree studies:

- Safe working in the laboratory means following a code of safe practice, supported by legislation, alongside a moral obligation to avoid harm to yourself and others, as discussed in Chapter 2.
- Any laboratory work that involves working with animal or human tissues must be considered carefully and must be performed in accordance with the relevant rules/legislation, including appropriate disposal after use.

In addition to the above, forensic science throws up some moral and legal dilemmas, and students are increasingly likely to be asked to reflect on ethical topics, for example in group discussions on current issues or recent cases in the media. For many topics, you will find that there are not always 'right' or 'wrong' answers, and it is important to be able to consider these issues in a rational and

Using textbooks in the lab – take this book (or photocopies of relevant pages) along to the relevant classes, so that you can make full use of the information during your practical sessions.

SAFETY NOTE Using mobile phones – these should never be used in a lab class, as there is a risk of contamination from hazardous substances. Always switch off your mobile phone before entering a laboratory. **Presenting results** – although you don't need to be a graphic designer to produce work of a satisfactory standard, presentation and layout are important and you will lose marks for poorly presented work.

Using inexpensive calculators – many unsophisticated calculators have a restricted display for exponential numbers and do not show the 'power of 10', e.g. displaying 2.4×10^{-5} as 2.4^{-05} , or 2.4E–05, or 2.4–05.

Using calculators for numerical problems – Chapter 54 gives further advice.

logical manner, and to provide reasoned argument in support of a particular viewpoint.

Basic requirements for laboratory work

Recording practical results

An A4 loose-leaf ring binder offers flexibility, since you can insert laboratory handouts or lined and graph paper at appropriate points. The danger of losing one or more pages from a loose-leaf system is the main drawback. Bound books avoid this problem, although those containing alternating lined/graph or lined/ blank pages tend to be wasteful – it is often better to paste sheets of graph paper into a bound book as required.

All of your forensic examination notes should be written in ink. Any mistakes should simply be scored out and initialled. Buy a black, spirit-based (permanent) marker for labelling lab glassware, etc. Fibre-tipped fine line drawing/ lettering pens are useful for preparing final versions of graphs and diagrams for assessment purposes. Use a see-through ruler (with an undamaged edge) for graph drawing, so that you can see data points and information below the ruler as you draw.

Calculators

These range from basic machines with no pre-programmed functions and only one memory, to sophisticated programmable minicomputers with many memories. The following may be helpful when using a calculator:

- **Power sources** choose a battery-powered machine, rather than a mains-operated or solar-powered type. You will need one with basic mathematical/scientific operations, including powers, logarithms (p. 503), roots and parentheses (brackets), together with statistical functions such as sample means and standard deviations (Chapter 55).
- Mode of operation the older operating system used by, for example, Hewlett-Packard calculators, is known as the reverse Polish notation. To calculate the sum of two numbers, the sequence is 2 [enter] 4 + and the answer 6 is displayed. The more usual method of calculating this equation is as 2 + 4 =, which is the system used by the majority of modern calculators. Most newcomers find the latter approach to be more straightforward. Spend some time finding out how a calculator operates, for example does it have true algebraic logic (√ then number, rather than number then √)? How does it deal with scientific notation (p. 502)?
- **Display** some calculators will display an entire mathematical operation (e.g. 2 + 4 = 6), while others simply display the last number/operation. The former type may offer advantages in tracing errors.
- **Complexity** in the early stages, it is usually better to avoid the more complex machines, full of impressive-looking but often unused pre-programmed functions. Go for more memory, parentheses or statistical functions rather than engineering or mathematical constants. Programmable calculators may be worth considering for more advanced studies. However, it is important to note that such calculators are often unacceptable for exams.

Presenting more advanced practical work

In some practical reports and in project work, you may need to use more sophisticated presentation equipment. Computer-based graphics packages can be useful – choose easily-read fonts such as Arial or Helvetica for posters and

Presenting graphs and diagrams – ensure these are large enough to be easily read – a common error is to present graphs or diagrams that are too small, with poorly chosen scales.

Printing on acetates – standard overhead transparencies are not suitable for use in laser printers or photocopiers – you need to make sure that you use the correct type. consider the layout and content carefully (p. 573). Alternatively, you could use fine-line drawing pens and dry-transfer lettering/symbols, such as those made by Letraset, although this approach can be more time-consuming than computer-based systems.

To prepare overhead transparencies for spoken presentations, you can use spirit-based markers and acetate sheets. An alternative approach is to print directly from a computer-based package, using a laser printer and special acetates, or use a digital projector with, for example, PowerPoint (p. 547). You can also photocopy on to special acetates. Advice on content and presentation is given in Chapter 59.

Sources for further study

- Barnard, C.J., Gilbert, F.S. and MacGregor, P.K. (2007) Asking Questions in Biology: Key Skills for Practical Assessments and Project Work, 3rd edn. Prentice Hall, Harlow.
- Bonner, P. and Hargreaves, A. (2011) *Basic Bioscience Laboratory Techniques: A Pocket Guide.* Wiley, New York.
- Mappes, T. and Degrazia, D. (2005) *Biomedical Ethics*, 6th edn. W.C. Brown/McGraw-Hill, New York.
- Meah, M. and Kebede-Weshead, E. (2012) *Essential Laboratory Skills for Biosciences*. Wiley, Chichester.
- Mier-Jedrzejowicz, W.A.C. (2007) *A Guide to HP Handheld Calculators and Computers,* 5th edn. Wilson-Barnett, Tustin. [Provides further guidance on the use of Hewlett-Packard calculators (reverse Polish notation).]
- Overton, J., Johnson, S. and Scott, J. (2015) *Study and Communication Skills for the Chemical Sciences*, 2nd edn. Open University Press, Oxford.

Study exercises

- **1.1 Consider the value of practical work**. Spend a few minutes thinking about the purpose of practical work within a specific part of your course (e.g. a particular first-year module) and then write a list of the six most important points.
- **1.2 Make a list of items required for a particular practical exercise.** This exercise is likely to be most useful if you can relate it to an appropriate practical session on your course, e.g. bulk drug examination.
- **1.3 Check your calculator skills.** Carry out the following mathematical operations, using either a hand-held

calculator or a PC with appropriate 'calculator' software.

(a) 5 imes (2 + 6)

- (b) (8.3 \div [6.4 1.9]) \times 24 (to four significant figures)
- (c) (1 \div 32) \times (5 \div 8) (to three significant figures)
- (d) 1.2 \times 10 5 + 4.0 \times 10 4 in scientific notation (see p. 44)
- (e) $3.4 \times 10^{-2} 2.7 \times 10^{-3}$ in 'normal' notation (i.e. conventional notation, not scientific format) and to three decimal places.

(See also the numerical exercises in Chapter 54.)

Health and Safety legislation – In the UK, the Health and Safety at Work etc. Act 1974 provides the main legal framework for health and safety. The Control of Substances Hazardous to Health (COSHH) Regulations 2002 impose specific legal requirements for risk assessment wherever hazardous chemicals or biological agents are used, with approved codes of practice for the control of hazardous substances, carcinogens and biological agents, including pathogenic microbes. Health and safety legislation requires institutions to provide a working environment that is safe and without risk to health. Where appropriate, training and information on safe working practices must be provided. Students and staff must take reasonable care to ensure the health and safety of themselves and of others, and must not misuse any safety equipment.

KEY POINT All practical work must be carried out with safety in mind, to minimise the risk of harm to yourself and to others – safety is everyone's responsibility.

Risk assessment

A risk assessment is a systematic approach to hazard identification and control. It is essential to consider what aspects of a laboratory or crime scene investigation activity can cause injury (to people) and then to control measures that will reduce the risk of injury to an acceptable level. Important aspects to consider are:

- substance hazards;
- how the substance is to be used;
- how it can be controlled;
- who is exposed;
- how much exposure;
- how long the exposure duration is.

KEY POINT It is important to distinguish between the HAZARD of a substance and the RISK resulting from exposure.

The risk assessment process

The five-step process requires you to:

- 1. **Identify the hazards and risk**: One way to do this is by using 'PEME', i.e. People, Equipment, Materials and Environment:
 - (a) 'People' hazards can cover a range of issues including the individual themselves and the systems that people have to use. In this 'people' context, consider the following terms: training, capabilities/restrictions, supervision, communication, adequate numbers and human error.
 - (b) 'Equipment' hazards relate to the equipment to be used, e.g. injection port of a gas chromatograph (GC) is typically 270°C (Chapter 14); it will also consider related aspects of the equipment including repair, maintenance, handling, storage, cleaning and operation of the equipment.
 - (c) 'Materials' hazards cover any liquid, solid or gas associated with the task, e.g. using controlled drugs to determine their concentration in blood (Chapter 38). This aspect also covers any by-products or waste generated by the activity.
 - (d) 'Environment' hazards relate to the surrounds you are working in, e.g. in crime scene investigation you may encounter poor lighting, heating and ventilation, poor access and egress, tripping/slipping hazards, restricted space/visibility and other activities taking place nearby.

Fig. 2.1 Major routes of entry of harmful substances into the body.

Definitions

Hazard – the potential of a substance or biological agent to cause harm.

Likelihood – the assessment of the likelihood of harm prior to any control measures being in place, given the amount/ nature of substance used and the environment/manner it's used in.

Risk – a measure of the likelihood and severity prior to any control measures being in place, calculated by likelihood \times severity.

Severity – this is a substance-specific rather than activity-specific measurement that can be indicated on the MSDS. In each instance, the highest numerical assessment should be used to calculate the risk.

2. Identify who can be harmed and how:

- (a) Who Although a task may seem to be well managed, if control measures fail then a whole range of people could be injured, e.g. co-workers in the area or people visiting the area. Your risk assessment should consider all those people who could potentially be harmed if the control measures fail.
- (b) How the major routes of chemical exposure (Fig. 2.1) are:
 - i **inhalation** breathing in small particles or chemical vapours is the most common pathway;
 - ii **dermal** some chemicals can be absorbed into the body;
 - iii eye contact rubbing your eyes after chemical exposure with your hands (with or without gloves);
 - iv **ingestion** inadvertent hand to mouth transmission;
 - v **subcutaneous penetration** improper use of glass pipettes/syringes and their disposal can lead to injury and exposure of the underlying skin tissue.
- 3. Identify the current controls and decide if more is required:
 - (a) **Identify the control measures currently in place** for each hazard you have identified: physical controls (i.e. local exhaust ventilation); procedural controls (i.e. a safe working procedure for the task); and behavioural controls (i.e. adequate supervision and monitoring of behaviour).
 - (b) **Identify the risks and decide on precautions** a risk matrix analysis. A risk analysis is a qualitative estimate of risk associated with each applicable task; it assumes that the planned or existing controls are in place. Box 2.1 shows you how to undertake a risk matrix analysis. The risk matrix evaluates the risk by allocating a numeric risk level and the tolerability of the hazard.
- **4. Record your findings** you will need to record your assessments. You will need to:
 - (a) State clearly what task/activity the risk assessment covers.
 - (b) Ensure that the hazards and controls are clearly listed.
 - (c) Consider all those people who could potentially be harmed.
 - (d) Ensure that the appropriate member of staff signs off the assessment.
 - (e) Make sure the completed risk assessments are readily available to those who might need them.
- **5. Review as necessary**. Risk assessments should be reviewed on a regular basis. The period of review should reflect the hazards: the greater the hazards the more frequent the review.

Box 2.1 How to perform a risk matrix analysis

A risk matrix analysis allows you to prioritise the likelihood and severity of risk to an individual from the hazard identified.

- **1 Using the form** in Fig. 2.2 (illustration is for superglue fuming of fingerprints using cyanoacrylate) conduct a COSHH assessment of the chemical to be used in a practical laboratory class.
- 2 First consult the Material Safety Data Sheet (MSDS) supplied; all manufacturers of hazardous chemicals are required to provide one of these sheets for all products that they sell.
- 3 Consult the hazard pictograms (Fig. 2.3) for visible relevant information. In addition, H (hazard) statements and P (precautionary) statements are

Box 2.1 (Continued)

available on the MSDS sheets and/or at http://www .sigmaaldrich.com/help-welcome/hazard-andprecautionary-statements.html (click on the Hazard statement overview or Precautionary statement overview tabs).

- 4 Assess the 'likelihood' of harm prior to any control measures being in place, given the amount/nature of substance used and the environment/manner it is used in (Table 2.1)
- 5 Assess the severity using the MSDS sheets for guidance (Table 2.1).
- 6 Calculate the risk using the risk matrix (Table 2.1) This calculation should quote the highest risk associated with the substance. You should consider additional control measures to further reduce the final risk's numerical value.

Experiment Record - short COSHH record form

COSHH Assessments for	Experiment Title:	Chemical Enhancement of latent fingerprints
-----------------------	-------------------	---

Name of Assessor__ Alan Langford____

Signed _____ A Langford ___ Date___ 01/10/15 _____

Substance	H Statement ¹	Hazard ² Key hazard(s) associated with the substance	Signal Word? ³	Likelihood ⁴	Severity⁵	Risk ⁶ (before additional control measures)	Specific Risk Control Measures ⁷	Controlled Risk ⁸
Basic yellow 40	H315, 319, 335	Causes skin, respiratory and serious eye irritation	WARNING	3	4	12	GLP, PPE, gloves safety glasses	4
Ethyl-2-cyanoacrylate	H315, 319, 335	Causes skin, respiratory and serious eye irritation	WARNING	3	4	12	GLP, PPE, gloves safety glasses, used in dedicated fingerprint fuming cabinet	4
Basic yellow working solution Ethanol (100ml+0.2g dye)	H225	Highly flammable liquid and vapour	WARNING (for neat ethanol)	2	3	6	GLP, PPE, use in fume hood	3

Substance	P Statement ⁹	Storage ¹⁰	Emergency Procedures (in event of spillage, fire etc.) ¹¹ Detail	Disposal ¹²
Basic yellow 40	P261, 305, 351, 338	Cool, sealed container, dry well ventilated	Fire: wear S/C breathing apparatus if necessary; extinguish; water or CO ₂ Spillage: water; do not let enter drain First aid: wash with water for 15 mins	In solvent; to flammable waste for incineration;
Basic yellow working solution	P210, 261, 305, 351, 338	Store in cool place. Keep container tighty closed in a dry and well-ventilated place. Containers which are opened must be carefully resealed and kept upright to prevent leakage.	Fire: water, CO ₂ , powder, foam Spillage: wear gloves, Absorb material, wash area with water First aid: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	Flammable waste for incineration

Fig. 2.2 Risk matrix analysis for chemical enhancement of fingerprints using cyanoacrylate fuming and Basic Yellow 40.

Box 2.1 (Continued)

Description	Pictogram	Hazard class and hazard category:
Exploding Bomb		Unstable explosives Explosives of Divisions 1.1, 1.2, 1.3, 1.4 Self reactive substances and mixtures, Types A,B Organic peroxides, Types A,B
Flame	٢	Flammable gases, category 1 Flammable aerosols, categories 1,2 Flammable liquids, categories 1,2,3 Flammable solids, categories 1,2 Self-reactive substances and mixtures, Types B,C,D,E,F Pyrophoric liquids, category 1 Self-heating substances and mixtures, categories 1,2 Substances and mixtures, which in contact with water, emit flammable gases, categories 1,2,3 Organic peroxides, Types B,C,D,E,F Pyrophoric gas (US only)
Flame Over Circle	۲	Oxidizing gases, category 1 Oxidizing liquids, categories 1,2,3
Gas Cylinder	$\langle \rangle$	Gases under pressure: - Compressed gases - Liquefied gases - Refrigerated liquefied gases - Dissolved gases
Corrosion		Corrosive to metals, category 1 Skin corrosion, categories 1A,1B,1C Serious eye damage, category 1
Skull and Crossbones		Acute toxicity (oral, dermal, inhalation), categories 1,2,3
Exclamation Mark		Acute toxicity (oral, dermal, inhalation), category 4 Skin irritation, category 2 Eye irritation, category 2 Skin sensitisation, category 1 Specific Target Organ Toxicity – Single exposure, category 3
Health Hazard		Respiratory sensitization, category 1 Germ cell mutagenicity, categories 1A,1B,2 Carcinogenicity, categories 1A,1B,2 Reproductive toxicity, categories 1A,1B,2 Specific Target Organ Toxicity – Single exposure, categories 1,2 Specific Target Organ Toxicity – Repeated exposure, categories 1,2 Aspiration Hazard, category 1
Environment	×	Hazardous to the aquatic environment - Acute hazard, category1 - Chronic hazard, categories 1,2

Fig. 2.3 Hazard warning pictograms. Sigma Aldrich. Available at: http://www.sigmaaldrich .com/safety-center/understanding-the-label.html#67-548-ec-pictograms.